LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - NOVEMBER 2011
PH 1814/PH 1809 - CLASSICAL MECHANICS

Date: 05-11-2011
Time : 1:00-4:00
\square Max. : 100 Marks

PART - A

Answer ALL the questions
$(10 \times 2=20)$

1. State any two differences between the Lagrangian and the Hamiltonian.
2. If $\mathrm{L}=1 / 2 \mathrm{~m}\left(\dot{r}^{2}+\mathrm{r}^{2} \epsilon^{2}\right)-\mathrm{V}(\mathrm{r})$ and θ is a cyclic coordinate. Find \mathbf{p}_{θ}.
3. Prove that $\mathrm{d} / \mathrm{dt}[\mathrm{mT}]=\mathbf{F} . \mathbf{p}$ where T is the kinetic energy of the particle.
4. Write the Euler's equations for the symmetric top with moments of inertia $\mathrm{I}_{1}, \mathrm{I}_{2}$, and I_{3}.
5. State the canonical equations of motion for the Hamiltonian H of a system of particles.
6. Show that the Hamiltonian is a constant of motion if it is not an explicit function of time.
7. Show that the generating function $F_{3}=p Q$ generates an identity transformation with a negative sign.
8. Show that $\left[p_{x}, L_{z}\right]=-p_{y}$
9. State Jacobi identity.
10. Define Hamilton's principal function S

PART - B

Answer any FOUR questions
(4 X $7.5=30$)
11. Set up the Lagrangian for a particle of mass m in a central force using polar coordinates (r, θ) and hence obtain the differential equation of orbit of the form: $d^{2} u / d \theta^{2}+u=-m / l^{2} d / d u[V(1 / u)]$.
12. Obtain the Euler's equations of motion for a rigid body acted upon by a torque \mathbf{N}.
13. Derive an expression for the Coriolis force and state any one example as an illustration of the Coriolis force.
14. Show that the transformation $\mathrm{Q}=\mathrm{q}+\mathrm{ip}$ and $\mathrm{P}=\mathrm{q}-\mathrm{ip}$ is not canonical. Suppose the size of the units used to measure the coordinates and momenta are changed to Q^{\prime} and P^{\prime} such that $Q^{\prime}=\mu Q$ and $P^{\prime}=\nu P$ then show the transformation equations are canonical if $\mu=i / 2 v$
15. Define action and angle variables. Using the action angle variable method show that the frequency of the one dimensional oscillator is $v=(1 / 2 \pi) \sqrt{ }(\mathrm{k} / \mathrm{m}) \quad(3+4.5)$

PART - C
Answer any FOUR questions
$(4 \times 12.5=50)$
16. a) Obtain the Lagrange's equations from the variational principle for a holonomic system.
b) Using the definition of the Hamiltonian $\mathrm{H}=\Sigma \mathrm{p}_{\mathrm{i}} \dot{q}_{\mathrm{i}}-\mathrm{L}$ prove that the Hamiltonian is a sum of kinetic energy and potential energy.
$(7.5+5)$
17. a) A particle of mass m is attached to the mid-point of a weightless rod of length L. The ends of the rod are constrained to move along the x and y axes without friction. Write the Lagrangian and solve the equation of motion assuming that gravitational field acts in the negative y direction.
b) A particle of mass m moves in one dimension such that it has the Lagrangian $\mathrm{L}=\mathrm{m}^{2} \dot{x}^{4} / 12+\mathrm{m} \dot{x}^{2} / 4 \mathrm{~V}(\mathrm{x})-\mathrm{V}^{2}(\mathrm{x})$ where V is some differentiable function of x . Find the equation of motion for x . (6.5)
18. a) Obtain the transformation equations for the generating functions $F_{2}(q, P, t)$ and $F_{3}(p, Q, t)$
b) Show that the transformation given by $2 P=p^{2}+q^{2}$ and $Q=\tan ^{-1} q / p$ is canonical.
$(8+4.5)$
19. a) Solve by the Hamilton-Jacobi method the motion of a particle in a plane under the action of a central potential $\mathrm{V}(\mathrm{r})$ to obtain the equation of orbit. (7.5)
b) Solve the motion of a particle in one dimension whose Hamiltonian is given by $H=p^{2} / 2 m+V(q)$.
20. Write notes on any TWO of the following
i) Rutherford scattering formula
ii) Fundamental Poisson's brackets.
iii) Kepler's third law by action-angle variable method.

